Uranium Miner

"Tracking Uranium Related Mining Companies & Opportunities"

  Click here for complete list of uranium miners  


Glossary of uranium mining terms

Price of uranium

$23.75/lb U3O8

Stock quotes & U research

About us



 Overview of Uranium Price, Supply, and Demand





Current Price:

U308 $23.75/lb* Effective: September 26,, 2016 (changed -$1.00 from survey 1 week ago). 



Click to see Uranium Futures => Uranium Futures - CME


Uranium/Nuclear focused ETFs: Click to see Global X Uranium ETF (URA) => Uranium ETF


Other uranium related ETF style investment vehicles (focused on nuclear energy but are not limited to uranium mining and are not direct competition for URA): Market Vectors Nuclear Energy (NLR), and Barclays iShares Global Nuclear Energy (NUCL)


Although we often reference the spot price of uranium, the long-term price is what really counts as only a small fraction of the metal is actually traded on spot prices; over six times more uranium is traded in long-term market prices than in the spot market price. The long term market price is consistently and significantly higher than spot.


Long term price support comes from international competition for the commodity as a result of escalating nuclear programs in nations such as India and China. According to the World Nuclear Association there are official plans in the works worldwide (as of Q3 2015) for 555 new reactors (either under construction, planned, or proposed).

Welcome to Uranium Miner

We track active uranium mining interests worldwide & provide insight into uranium resource companies that offer outstanding properties, management and experience in the mining / exploration industry.

Free Newsletter/Membership




Sponsor Information / Advertisement


Fig. 1. (above) American Lithium's Fish Lake Valley playa, in area of anomalous lithium / boron / potash brine mineralization.

American Lithium Corp. (TSX-V: LI) (US Listing: MNIKF) is developing a lithium brine project in Nevada with world-class potential, approximately 25 km from Albemarle's Silver Peak (the only commercially producing lithium project in North America). The Company is executing on a large-scale strategy having assembled 100% of the entire heart of Fish Lake Valley structure (18,552 contiguous acres) that is believed analogous to the neighboring Clayton Valley structure (home to Albemarle, Pure Energy Minerals, and Lithium X), both valleys have similar hydrothermal enrichment models. American Lithium's Fish Lake Valley Project is advanced-stage and lithium values are encouraging enough for the Company to start to delineate the resource in the sediments of the brines, how big this gets is where things get interesting; the project exhibits hallmarks of major lithium resource presence with the footprint, scope, and scalability that will allow the Company to create a large critical mass presence -- something the market is thirsting for as global industrial manufactures look to ensure they have adequate domestic supplies of lithium to satisfy growing demands..


The Company is spearheaded by an experienced management team that is no stranger to major success, having individually employed well-timed visionary big-picture strategies at other companies. The team behind LI.V now was part of the same group that that were involved, long before the current lithium rush ever happened, with Pure Energy Minerals in its early-days; Pure Energy was recapitalized and advanced its flagship to resource (PE now hosts an inferred lithium resource of 816,000 LCE). Other past successes include major oil sand projects (e.g. Osum Oil Sands Corp. which attained a multi-billion dollar market cap) -- In short, American Lithium shareholders are in solid hands of people that are proven, technically savvy, responsible, prudent and plan with large-scale in mind.
The full Mining Journal review may be viewed at http://miningmarketwatch.net/li.htm online.






Uranium News and Opinion:





----- ----- ----- ----- ----- ----- -----


Demand Side: Governments worldwide struggle for solutions to control green house gas emissions and produce affordable energy; nuclear power is the cleanest, least expensive and most secure source of electricity. There are currently (as of Q3 2015) 436 operational nuclear reactors world wide and that number is expected to grow significantly within the next decade.

May 12 Eureka

  • The first commercial nuclear power stations started operation in the 1950s.
  • There are over 435 commercial nuclear power reactors operable in 31 countries, with over 375,000 MWe of total capacity. About 70 more reactors are under construction.
  • They provide over 11% of the world's electricity as continuous, reliable base-load power, without carbon dioxide emissions.
  • 56 countries operate a total of about 240 research reactors and a further 180 nuclear reactors power some 140 ships and submarines.

Nuclear technology uses the energy released by splitting the atoms of certain elements. It was first developed in the 1940s, and during the Second World War to 1945 research initially focused on producing bombs by splitting the atoms of particular isotopes of either uranium or plutonium.

In the 1950s attention turned to the peaceful purposes of nuclear fission, notably for power generation. Today, the world produces as much electricity from nuclear energy as it did from all sources combined in the early years of nuclear power. Civil nuclear power can now boast over 16,000 reactor years of experience and supplies almost 11.5% of global electricity needs, from reactors in 31 countries. In fact, through regional grids, many more than those countries depend on nuclear-generated power.

Many countries have also built research reactors to provide a source of neutron beams for scientific research and the production of medical and industrial isotopes.

Today, only eight countries are known to have a nuclear weapons capability. By contrast, 56 operate about 240 civil research reactors, over one thrid of these in developing countries. Now 31 countries host over 435 commercial nuclear power reactors with a total installed capacity of over 375,000 MWe. This is more than three times the total generating capacity of France or Germany from all sources. About 70 further nuclear power reactors are under construction, equivalent to 20% of existing capacity, while over 160 are firmly planned, equivalent to half of present capacity.

Sixteen countries depend on nuclear power for at least a quarter of their electricity. France gets around three-quarters of its power from nuclear energy, while Belgium, Czech Republic, Finland, Hungary, Slovakia, Sweden, Switzerland, Slovenia and Ukraine get one-third or more. South Korea and Bulgaria normally get more than 30% of their power from nuclear energy, while in the USA, UK, Spain, Romania and Russia almost one-fifth is from nuclear. Japan is used to relying on nuclear power for more than one-quarter of its electricity and is expected to return to that level. Among countries which do not host nuclear power plants, Italy and Denmark get almost 10% of their power from nuclear.

In electricity demand, the need for low-cost continuous, reliable supply can be distinguished from peak demand occurring over few hours daily and able to command higher prices. Supply needs to match demand instantly and reliably over time. There are number of characteristics of nuclear power which make it particularly valuable apart from its actual generation cost per unit – MWh or kWh. Fuel is a low proportion of power cost, giving power price stability, its fuel is on site (not depending on continuous delivery), it is dispatchable on demand, it has fairly quick ramp-up, it contributes to clean air and low-CO2 objectives, it gives good voltage support for grid stability. These attributes are mostly not monetised in merchant markets, but have great value which is increasingly recognised where dependence on intermittent sources has grown.

Improved performance from existing nuclear reactors

As nuclear power plant construction returns to the levels reached during the 1970s and 1980s, those plants now operating are producing more electricity. In 2011, production was 2518 billion kWh. The increase over the six years to 2006 (210 TWh) was equal to the output from 30 large new nuclear power plants. Yet between 2000 and 2006 there was no net increase in reactor numbers (and only 15 GWe in capacity). The rest of the improvement is due to better performance from existing units.

In a longer perspective, from 1990 to 2010, world capacity rose by 57 GWe (17.75%, due both to net addition of new plants and uprating some established ones) and electricity production rose 755 billion kWh (40%). The relative contributions to this increase were: new construction 36%, uprating 7% and availability increase 57%. In 2011 and 2012 both capacity and output diminished due to cutbacks in Germany and Japan following the Fukushima accident.

Considering 400 power reactors over 150 MWe for which data are available: over 1980 to 2000 world median capacity factor increased from 68% to 86%, and since then it has maintained around 85%. Actual load factors are slightly lower: 80% average in 2012 (excluding Japan), due to reactors being operated below their full capacity for various reasons. One quarter of the world's reactors have load factors of more than 90%, and nearly two thirds do better than 75%, compared with about a quarter of them over 75% in 1990. The USA now dominates the top 25 positions, followed by South Korea, but six other countries are also represented there. Four of the top ten reactors for lifetime load factors are South Korean.

US nuclear power plant performance has shown a steady improvement over the past twenty years, and the average load factor in 2012 was 81%, up from 66% in 1990 and 56% in 1980. US capacity factors have been over 90% in five of the seven years to 2013. This places the USA as the performance leader with nearly half of the top 50 reactors, the 50th achieving more than 94% in 2012. The USA accounts for nearly one third of the world's nuclear electricity.

In 2012, ten countries with four or more units averaged better than 80% load factor, while French reactors averaged 73.6%, despite many being run in load-following mode, rather than purely for base-load power.

Some of these figures suggest near-maximum utilisation, given that most reactors have to shut down every 18-24 months for fuel change and routine maintenance. In the USA this used to take over 100 days on average but in the last decade it has averaged about 40 days. Another performance measure is unplanned capability loss, which in the USA has for the last few years been below 2%.

World overview

All parts of the world are involved in nuclear power development, and a few examples follow.


The Chinese government plans to increase nuclear generating capacity to 58 GWe with 30 GWe more under construction by 2020. China has completed construction and commenced operation of 20 new nuclear power reactors over 2002-14, and some 30 new reactors are either under construction or likely to be so by mid-2015. These include the world's first four Westinghouse AP1000 units and a demonstration high-temperature gas-cooled reactor plant. Many more are planned, with construction due to start within about three years. China is commencing export marketing of a largely indigenous reactor design. R&D on nuclear reactor technology in China is second to none.


India’s target is to have 14.5 GWe nuclear capacity on line by 2020 as part of its national energy policy. These reactors include light- and heavy water reactors as well as fast reactors. In addition to the 21 on line, six power reactors are under construction, of both indigenous and foreign design, and including a 500 MWe prototype fast breeder reactor. This will take India's ambitious thorium programme to stage 2, and set the scene for eventual utilization of the country's abundant thorium to fuel reactors.


Russia plans to increase its nuclear capacity to 30.5 GWe by 2020, using its world-class light water reactors. A large fast breeder unit has started up, the country's second, and development proceeds on others, aiming for significant exports. An initial floating power plant is under construction, with delivery due in 2016. Russia is active in building and financing new nuclear power plants in several countries.


Finland and France are both expanding their fleets of nuclear power plants with the 1650 MWe EPR from Areva, two of which are also being built in China. Several countries in Eastern Europe are currently constructing or have firm plans to build new nuclear power plants (Bulgaria, Czech Republic, Hungary, Romania, Slovakia, Slovenia and Turkey).

A UK government energy paper in mid-2006 endorsed the replacement of the country’s ageing fleet of nuclear reactors with new nuclear build, and four 1600 MWe French units are planned for operation by 2023. The government aims to have 16 GWe of new nuclear capacity operating by 2030.

Sweden has abandoned its plans to prematurely decommission its nuclear power, and is now investing heavily in life extensions and uprates. Hungary, Slovakia and Spain are all implementing or planning for life extensions on existing plants. Germany agreed to extend the operating lives of its nuclear plants, reversing an earlier intention to shut them down, but has again reversed policy following the Fukushima accident.

Poland is developing a nuclear program, with 6000 MWe planned. Estonia and Latvia are involved in a joint project with established nuclear power producer Lithuania. Belarus has started construction of its first Russian reactor, and a second is due to follow.

United States

In the USA, there are five reactors under construction, four of them new AP1000 designs. One of the reasons for the hiatus in new build in the USA to date has been the extremely successful evolution in maintenance strategies. Over the last 15 years, changes have increased utilization of US nuclear power plants, with the increased output corresponding to 19 new 1000 MW plants being built.

South America

Argentina and Brazil both have commercial nuclear reactors generating electricity, and additional reactors are under construction. Chile has a research reactor in operation and has the infrastructure and intention to build commercial reactors.

South Korea

South Korea has plans or placed orders for 12 new nuclear power reactors. It is also involved in intense research on future reactor designs.

SE Asia

Vietnam intends to have it first nuclear power plant operating about 2023 with Russian help and a second soon after with Japanese input. Indonesia and Thailand are planning nuclear power programs.

South Asia

Bangladesh has approved a Russian proposal to build its first nuclear power plant. Pakistan with Chinese help is building three small reactors and preparing to build two large ones near Karachi.

Central Asia

Kazakhstan with its abundance of uranium is working closely with Russia in planning development of small new reactors for its own use and export.

Middle East

The United Arab Emirates is building the first three of four 1450 MWe South Korean reactors at a cost of over $20 billion and is collaborating closely with IAEA and experienced international firms. Iran’s first power reactor is in operation, and more are planned.

Saudi Arabia, Jordan and Egypt are also moving towards employing nuclear energy for power and desalination.


South Africa is committed to plans for further conventional nuclear power reactors.

Nigeria has sought the support of the International Atomic Energy Agency to develop plans for two 1000 MWe reactors.

New countries

In September 2012 the International Atomic Energy Agency (IAEA) expected seven newcomer countries to launch nuclear programs in the near term. It did not name these, but Lithuania, UAE, Turkey, Belarus, Vietnam, Poland, and Bangladesh appear likely candidates. Others had stepped back from commitment, needed more time to set up infrastructure, or did not have credible finance.

Other nuclear reactors

In addition to commercial nuclear power plants, there are about 240 research reactors operating, in 56 countries, with more under construction. These have many uses including research and the production of medical and industrial isotopes, as well as for training.

The use of reactors for marine propulsion is mostly confined to the major navies where it has played an important role for five decades, providing power for submarines and large surface vessels. At least 140 ships, mostly submarines, are propelled by some 180 nuclear reactors and over 13,000 reactor-years of experience has been gained with marine reactors. Russia and the USA have decommissioned many of their nuclear submarines from the Cold War era.

Russia also operates a fleet of six large nuclear-powered icebreakers and a 62,000 tonne cargo ship which are more civil than military. It is also completing a floating nuclear power plant with two 40 MWe reactors for use in remote regions.

Note: Taipower used nuclear energy to generate 16% of electricity on the island of Taiwan in 2012.



Historical Values (in USD) - month end close price:

  • Aug 16 $25.25

  • July 16 $26.25

  • June 16 $27.00

  • May 16 $27.25

  • Apr 16 $27.50

  • Mar 16 $29.15

  • Feb 16 $32.15

  • Jan 16 $34.75

  • Dec 15 $34.25

  • Nov 15 $36.00

  • Oct 15 $36.25

  • Sep 15 $37.00

  • Aug 15 $36.75

  • Jul 15 $36.00

  • Jun 15 $36.50

  • May 15 $35.00

  • Apr 15 $38.25

  • Mar 15 $39.50

  • Feb 15 $38.75

  • Jan 15 $37.15

  • Dec 14 $35.50

  • Nov 14 $40.00

  • Oct 14 $36.50

  • Sep 14 $35.50

  • Aug 14 $31.00

  • Jul 14 $28.50

  • Jun 14 $28.25

  • May 14 $28.25

  • Apr 14 $30.75

  • Mar 14 $34.00

  • Feb 14 $35.50

  • Jan 14 $35.50

  • Dec 13 $34.50

  • Nov 13 $36.35

  • Oct 13 $34.75

  • Sep 13 $35.00

  • Aug 13 $35.00

  • July 13 $34.50

  • June 13 $39.65

  • May 13 $40.50

  • Apr 13 $42.50

  • Mar 13 $42.25

  • Feb 13 $42.00

  • Jan 13 $44.00

  • Dec 12 $43.50

  • Nov 12 $42.00

  • Oct 12 $42.50

  • Sep 12 $46.50

  • Aug 12 $48.50

  • July 12 $49.25

  • June 12 $51.00

  • May 12 $52.00

  • Apr 12 $51.75

  • Mar 12 $51.00

  • Feb 12 $52.00

  • Jan 12 $52.00

  • Dec 11 $51.75

  • Nov 11 $51.75

  • Oct 11 $52.00

  • Sep 11 $52.50

  • Aug 11 $49.00

  • Jul 11 $51.75

  • Jun 11 $54.25

  • May 11 $57.50

  • Apr 11 $55.50

  • Mar 11 $62.50

  • Feb 11 $69.75

  • Jan 11 $72.00

  • Dec 10 $62.50

  • Nov 10 $61.00

  • Oct 10 $52.00

  • Sep 10 $46.50

  • Aug 10 $45.00

  • Jul 10 $43.50

  • Jun 10 $41.75

  • May 10 $40.75

  • Apr 10 $41.75

  • Mar 10 $42.00

  • Feb 10 $41.75

  • Jan 10 $42.50

  • Dec 09 $45.00

  • Nov 09 $45.50

  • Oct 09 $49.50

  • Sep 09 $42.50

  • Aug 09 $47.00

  • Jul 09 $47.00

  • Jun 09 $52.00

  • May 09 $50.00

  • Apr 09 $42.00

  • Mar 09 $42.00

  • Feb 09 $45.00

  • Jan 09 $50.00

  • Dec 08 $53.00

  • Nov 08 $55.00

  • Oct 08 $45.00

  • Sep 08 $55.55

  • Aug 08 $64.50

  • July 08 $64.50

  • June 08 $59.00

  • May 08 $60.00

  • Apr 08 $65.00

  • Mar 08 $71.00

  • Feb 08 $73.00

  • Jan 08 $78.00

  • Dec 07 $90.00

  • Nov 07 $93.00

  • Oct 07 $84.00

  • Sep 07 $85.00

  • Aug 07 $90.00

  • Jul 07 $120.00

  • Jun 07 $138.00

  • May 07 $133.00

  • Apr 07 $113.00

  • Mar 07 $95.00

  • Feb 07 $85.00

  • Jan 07 $75.00

  • Dec 06 $72.00

  • Nov 06 $63.00

  • Oct 06 $60.00

  • Sep 06 $54.00

  • Aug 06 $48.50

  • Jul 06 $47.25

  • Jun 06 $45.50

  • May 06 $43.00

  • Apr 06 $41.50

  • Mar 06 $40.50

  • Feb 06 $38.25

  • Jan 06 $37.50

  • Dec 05 $36.25

  • Nov 05 $34.50

  • Oct 05 $33.00

  • Sep 05 $31.00

  • Aug 05 $30.20

  • July 05 $29.50

  • Jun 05 $29.00

  • May 05 $29.00

  • Apr 05 $24.00

  • Mar 05 $22.50

  • Feb 05 $21.80

  • Jan. 05 $21.00

  • Dec. 04 $20.70

  • Nov. 04 $20.50

  • Oct. 04 $19.90

  • Aug. 04 $19.25

  • Jan 04 $15.50

  • Jan 03 $10.30

  • Jan 02 $9.60

* Considerations in determining spot price of Uranium: Data from recently completed transactions, data from pending transactions, firm bids to buy or borrow, firm offers to sell or lend, prices purchasers have expressed a willingness to pay but for which we are not aware of firm bids to buy, and prices sellers have expressed a willingness to accept but for which we are not aware of firm offers to sell. (Considerations not used in determining spot price: prices associated with deliveries under old or renegotiated contracts, or other than arm's-length transactions, charges for transportation other than that customarily provided by suppliers, and  prices of services or materials delivered under long-term contracts with primary suppliers).




©2005 - 2016 Uranium Miner Disclaimer/Disclosure/Terms of Use